HI,下午好,欢迎来到微信公众号转让!
24小时服务热线: 4000-163-301

新闻动态

NEWS CENTER

数据分析→用户路径拆解→收集数据→搭建仪表盘

2020-05-17

在实际的业务中,大多数人可能只会遇到以下一种或几种常见的场景,并且对于各个细分场景,所需要解决的问题和关注重点都是不一样的。

场景一:你刚加入一个成熟产品的用户增长部门,会发现业务当前有非常全面详实的用户和业务数据,但由于个人缺少数据分析的经验,面对一堆数据,除了能简要了解到产品基本情况,不知如何从数据中挖掘出更有价值的信息。

  • 待解决问题:面对大量数据,不知如何入手分析。
  • 所需的能力:各种可以从数据分析中找到增长线索的方法论。

场景二:你熟练掌握了基本的数据分析技能,能够基于现有数据找到增长线索,你想针对某些关键指标的异常情况进行分析,但不知道哪些数据相关性高,如何将多维度的数据关联分析。

  • 待解决问题:有明确的问题需求,但不知如何有效拆解数据问题。
  • 所需的能力:基于目标行为的拆解用户路径的方法。

场景三:拆解完用户路径后,发现目标的转化路径中有部分数据缺失,无法有效支撑你的分析。

  • 待解决问题:如何快捷有效的收集缺失的数据。
  • 所需的能力:制定数据采集方案。

场景四:需要的数据采集到位后,发现数据统计混乱,每次查询和分析数据的效率成本都很高。

  • 待解决问题:数据如何高效可视化呈现,降低查询使用的成本。
  • 所需的能力:创建数据仪表盘。

诊断上述的工作场景,大多数增长人的工作顺序可能是:数据分析→用户路径拆解→收集数据→搭建仪表盘。

基于数据驱动用户增长可以分为以下五个步骤:


对大多数增长从业者来讲,最重要的是先掌握一套数据分析方法,从现有数据中快速找到增长线索,取得一些增长业绩,再反过来检查数据埋点、统计等地方有没有问题。当掌握了数据分析方法,但所在的公司or负责的业务没有基础数据也无从下手,才需要思考如何拆解用户路径、数据采集。而数据仪表盘,则是为了提高查询效率,支持数据分析工作快速、准确开展。

一、分析数据:多维度数据分析

从数据分析中寻找增长机会,可分为“宏观”和“微观”两个角度。

  • 宏观:在基础数据中,找到较大的增长机会。
  • 微观:对比精细化的用户数据进行分析,挖掘相对隐蔽的增长线索。

无论所在的公司是否有用户的精细化数据,都可以通过从整体的角度进行数据分析,找到增长乏力点。然后再考虑要不要分析更精细的数据。

案例:某内容类APP产品

本节将会围绕北极星指标和全链漏增长模型,通过一个案例(数据虚拟)展开关于宏观数据分析的分享。

  • 北极星指标:指导增长工作方向最重要的指标,也可以理为业务现阶段的唯一重要的指标。制定北极星指标时,需要在服务于业务的长期健康增长下,同时考虑商业目标和用户价值。
  • 全链漏斗增长模型:是把影响北极星指标的主要细分指标梳理梳理出来,并标注转化率。通过模型,可以将北极星指标细化拆解,从中找到增长的机会点。

案例场景:刚刚入职一家内容类APP,负责用户增长,公司没有完善的后台数据系统,无法通过详细的用户行为埋点数据,如何找到一些增长的线索。公司现有后台可提高的数据指标:下载量、注册量、登录量、平均阅读时长、基本用户信息。

第一步:构建全链漏斗增长模型


从转化漏斗可发现:

  • 拉新转化率较高:新用户下载到注册的转化率为70%,新用户下载转化率不错。
  • 老用户活跃度低:当月活跃老用户占总注册用户数的10%,老用户活跃较低。活跃用户主要靠新用户补充。
  • 用户感知的产品价值较低:当月人均阅读时长较低,远低于行业均值。