
新闻动态
NEWS CENTER
NEWS CENTER
2020-05-17
在实际的业务中,大多数人可能只会遇到以下一种或几种常见的场景,并且对于各个细分场景,所需要解决的问题和关注重点都是不一样的。
场景一:你刚加入一个成熟产品的用户增长部门,会发现业务当前有非常全面详实的用户和业务数据,但由于个人缺少数据分析的经验,面对一堆数据,除了能简要了解到产品基本情况,不知如何从数据中挖掘出更有价值的信息。
场景二:你熟练掌握了基本的数据分析技能,能够基于现有数据找到增长线索,你想针对某些关键指标的异常情况进行分析,但不知道哪些数据相关性高,如何将多维度的数据关联分析。
场景三:拆解完用户路径后,发现目标的转化路径中有部分数据缺失,无法有效支撑你的分析。
场景四:需要的数据采集到位后,发现数据统计混乱,每次查询和分析数据的效率成本都很高。
诊断上述的工作场景,大多数增长人的工作顺序可能是:数据分析→用户路径拆解→收集数据→搭建仪表盘。
基于数据驱动用户增长可以分为以下五个步骤:
对大多数增长从业者来讲,最重要的是先掌握一套数据分析方法,从现有数据中快速找到增长线索,取得一些增长业绩,再反过来检查数据埋点、统计等地方有没有问题。当掌握了数据分析方法,但所在的公司or负责的业务没有基础数据也无从下手,才需要思考如何拆解用户路径、数据采集。而数据仪表盘,则是为了提高查询效率,支持数据分析工作快速、准确开展。
从数据分析中寻找增长机会,可分为“宏观”和“微观”两个角度。
无论所在的公司是否有用户的精细化数据,都可以通过从整体的角度进行数据分析,找到增长乏力点。然后再考虑要不要分析更精细的数据。
本节将会围绕北极星指标和全链漏增长模型,通过一个案例(数据虚拟)展开关于宏观数据分析的分享。
案例场景:刚刚入职一家内容类APP,负责用户增长,公司没有完善的后台数据系统,无法通过详细的用户行为埋点数据,如何找到一些增长的线索。公司现有后台可提高的数据指标:下载量、注册量、登录量、平均阅读时长、基本用户信息。
第一步:构建全链漏斗增长模型
从转化漏斗可发现: